
Final Project Report
STATS202 Wentao Zhu

Stanford ID: 006321396

Final Project Report
Abstract
Introduction
Data Observation
Single Model Classification

K-Nearest Neighbor Classifier
Naive Bayes Classifier
Decision Tree Classifier
Random Forest Classifier
Boosting Classifier
Support Vector Machine Classifier
Logistic Regression Classifier
Neural Network Classifier

Model Ensembling
Majority Vote
Stacking

Conclusion

Abstract

The task of this project is to perform webpage relevance analysis, which is essentially a binary classification
problem. We first analyzed the dataset and evaluated the importance of variables, and then applied multiple
classification methods. Fine-tuning methods are performed under cross validation. Finally, we tried to
ensemble different models to produce a more comprehensive classifier.

Introduction

The goal of the project is to make relevance predictions for each row (urls for a query) in the test data set. The
predictions are binary: 1 for irrelevant and 0 for relevant. A training set of 10 attributes and 80046
observations is provided. As the meaning of the predictors are unknown, it is necessary to perform feature
selection and transformation while applying classification methods.

Data Observation

First of all, we observed the dataset and measured the importance of attributes. The training data are well
balanced with 43.71% positive (relevant) samples and no missing entries. There are 10 predictor candidates,
among which is_homepage is binary.

We then visualized the pattern of distribution between pairs of variables and computed the correlation
matrix.

The correlation matrix heat map:

We found that sig3 and sig5 are highly correlated with correlation coefficient more than 0.81, and sig2 is
the most directly related predictor for relevance.

We then applied best subset selection method using forward/backward selection using the crirerion of Akaike
Information Criterion (AIC), the results suggested that sig2, sig6, and sig1 are the most important
predictors, while sig3, sig4, sig5, is_homepage are of little importance.

The ranking of importance is also validated by regsubsets() in the boosting classifier (as shown in the
figure above).

Single Model Classification

We applied 8 classification models (KNN, Naive Bayes, Decision Tree, Random Forest, Boosting, Support
Vector Machine, Logistic Regression, Neural Network) to the dataset, tuned them and measured their
performance by 5-fold cross validation. This step provided acceptable single classification models as well as
helped feature selection and transformation.

K-Nearest Neighbor Classifier

K-Nearest Neighbor algorithm is a simple and important non-parametric method used for classification and
regression. As a type of instance-based learning algorithm, it typically requires sufficient well-rounded
training samples, which is satisfied by our dataset.

We used knn() from the package class to implement K-Nearest Neighbor classifiers. The most important
hyperparameter k is selected by cross validation. Also, as K-Nearest Neighbor Classifiers can't discriminate
predictors, it helps to measure the effects of feature selection and transformation. We achieved the least test
error when sig3, sig4, sig5 are removed from the vector space. Normalization of the remaining predictors
didn't improve the answer, which may indicate the magnitude of the remaining predictors roughly
correspond with their importance.

The cross validation result for k is plotted:

Naive Bayes Classifier

Naive Bayes is a a simple technique for constructing classifiers based on probability models. It makes strong
(naive) independence assumptions between the features.

We used naiveBayes() from the package e1071 to implement Naive Bayes Classifiers and the test accuracy
is about 60.0% after tuning, which suggests the model may be unsuitable for this task.

Decision Tree Classifier

Decision Tree Classifier is a straightforward classification method. It can handle irrelevant variables and is
known for great interpretability.

We used the function Tree under the package tree. The default parameters set gives an accuracy rate of
64.0% using only one predictor, sig2. We then tuned mindev of the model which limits the minimum
deviation among samples within a leaf node. The best test accuracy is 65.0% at mindev = 0.001.

Random Forest Classifier

We used the function randomForest under the package RandomForest.

As the lecture notes suggest, the empirical predictor number used in a single tree is which is about 3
in this case. We finetuned m as well as number of trees and the results are shown as follows:

Therefore, we select m = 2 and numbers of trees = 500.

Boosting Classifier

As the "best off-the-shelf classifier in the world", boosting classifiers are assembled from weak classifiers with
iterations of training and self-adjusting learning weights.

We used the boosting function gbm under the gbm package, where decision tree is the base classifier by
default. We further tuned shrinkage and number of trees, two most important parameters for the model.

Kernel Test Accuracy
linear 65.18%
polynomial 63.18%
sigmoid 54.69%
radial 66.26%

From the grid search results, we select shrinkage = 0.1 and number of trees = 250

We additionally tried to employ new features to the Boosting classifier.

Support Vector Machine Classifier

Support Vector Machine Classifier is a kind of non-probabilistic binary linear classifier. By selecting the
kernel properly, SVMs can efficiently perform linear and non-linear classification.

We used svm() from the package e1071 to train Support Vector Machine Classifiers. Kernel selection is vital
to the performance of SVM classifiers for different kernels implicitly mapping the predictors into high-
dimensional feature spaces. We tested all the built-in kernels (linear, polynomial, sigmoid, radial) and the
results are shown as follows:

Logistic Regression Classifier

Logistic Regression Classifier is one of the most classic binary classification models. We used the built-in
glm() to perform logistic regeression.

Transformation of predictors is our main approach to tune logistic regression classifiers. We achieved the best
performance of when ommited sig3, sig4, sig5 and added a cross term sig1*sig2*sig6*query_length.

Neural Network Classifier

Artificial neural networks can be used for classification without being programmed with any task-specific
rules, which matches our task well.

First we used the built-in multilayer perceptron (MLP) model in scikit-learn to fit the training data, but the
test accuracy is comparatively low (~60%). We then constructed a simple neural network with 5 densely
connect layers using python package Keras. By tuning activation functions and optimizer, we gained a model
with over 0.66 test accuracy. With limited input dimensions, the complexity of neural network is restricted
and this may be why it doen't show superiority over the classic statistical learning methods like SVM or
Boosting.

http://scikit-learn.org/stable/index.html
https://keras.io/

 Model Accuracy Rate
 1 KNN 0.615
 2 Naïve Bayes 0.594
 3 Logistic Regression 0.656
 4 Decision Tree 0.650
 5 Random Forest 0.662
 6 Boosting 0.667
 7 SVM 0.663
 8 Neuron Network 0.658

The performance of our single model classifiers are summarized as below:

Model Ensembling

Now that we have a variety of tuned single classifiers, one possible optimization is to ensemble them. There
are several classic and intuitive model ensembling methods and the ensembling process should be cross
validated to avoid overfitting. In practice, we mainly considered the single classifiers with comparatively best
performance, namely Random Forest Classifier, Boosting Classifier, Logistic Regression Classifier, SVM
Classifier and Neural Netwrok Classifier.

Majority Vote

Intuitively, taking a majority vote of differant model's predictions generates a fusion of individual's
characteristics.

However, in practice we found that about 22.7% of samples are misjudged by all the classifiers. In other
words, the classifiers are not very well-round so that the voting method only yields a medium performance
improvement.

Stacking

Stacking (also called meta ensembling) is used to combine information from multiple predictive models to
generate a new model. The new model takes the otput of base models as its input and generally outperform
each of the individual models.

The reason is that the stacked model is able to highlight each base model where it performs best and discredit
each base model where it performs poorly. For this reason, stacking is most effective when the base models
are significantly different.

We used StackingClassifier() from python package mlxtend to apply stacking method to our single
classifiers and the whole process is cross-validated. The stacking method improves three models of test
accuracy 64%, 63%, 65% to more than 66%. However, when we include the fine-tuned Boosting Classifier
(already 66% test accuracy), the improvement seems to be negligible, which may indicate Boosting itself is
already a well-ensembled classifier.

Empirically, model ensembleing tend to yield better results when there is a significant diversity among the
models. We then examined the similarity among our single classifiers and found they have strong correlation.
Similarity between predictions of Neural Network Classifier and Boosting Classifier is even nearly 0.92. This
may be the mainly reason for the only a slight improvement is achieved by stacking.

Conclusion

https://github.com/rasbt/mlxtend

We selected important variables, trained single and ensembled classifiers and used cross validation to
evaulate their performance. Variable selection and fine-tuning improves the performance of non-decision-
tree-based models significantly.

However, model ensembling only improve the test accuracy slightly. Correlation among the models may be
the main reason, though the structure of the classifiers are quite diverse.

	Final Project Report
	Abstract
	Introduction
	Data Observation
	Single Model Classification
	K-Nearest Neighbor Classifier
	Naive Bayes Classifier
	Decision Tree Classifier
	Random Forest Classifier
	Boosting Classifier
	Support Vector Machine Classifier
	Logistic Regression Classifier
	Neural Network Classifier

	Model Ensembling
	Majority Vote
	Stacking

	Conclusion

